TOP BRANGUS UFRGS 2023

Equipe – Estação Experimental Agronômica da UFRGS

Dr. Jaime Urdapilleta Tarouco - Zootecnista

Dr. Marcelo Porto Nicola – Engenheiro Agrônomo

Dra. Verônica Machado Rolim - Médica Veterinária

Dr. Rafael Gomes Dionello – Diretor da Estação Experimental

Doutoranda Daniela Guarchez Adamich – Zootecnista

Mestrando Lucas Cardoso Azeredo - Zootecnista

Dra. Fernanda Dorneles Feijó – Zootecnista

Nelson Oliveira da Rosa – Colaborador

João Elias Fagundes - Colaborador

Marlon Pacheco Andriotti - Colaborador

Ronaldo Silveira Garcia – Colaborador

Luis Fernando Oliveira de Oliveira - Colaborador

Luiz Felipe da Silva Teixeira – Colaborador

Ronaldo de Souza Fonseca – Colaborador

Equipe – Associação Brasileira de Brangus

Ladislau Lancsarics Junior - Presidente ABB

Antônio Carlos Corrêa Osório - Presidente CDT

Roberto Grecellé - Executivo ABB

Ândrea Plotzki Reis - Coordenadora de Projetos Técnicos

Renata Pereira - Superintendente de registros

Teste de Eficiência Alimentar

O CAR, considerado medida alternativa de eficiência alimentar, é definido como a diferença entre o consumo observado e o consumo predito (KOCH et al. 1963; ARCHER et al. 1997; BASARAB et al., 2003). Para determinar com precisão o CAR, a ingestão de alimento individual e o GDM devem ser medidos. Devido a sua independência quanto ao nível de produção, pesquisadores apontam o CAR com uma variação nos processos metabólicos básicos, o que determina a eficiência (KORVER, 1988).

Para a avaliação do CAR, os animais são submetidos a um teste em um período de tempo e idade cronológica determinados. O teste é realizado utilizando uma mesma dieta, manejo e instalações. O consumo alimentar predito é obtido pela regressão da ingestão alimentar diária sobre o ganho médio diário (GMD) e peso metabólico médio na metade do teste (PMMT), onde o CAR é o resíduo da equação. Ou seja, é o valor que não é explicado pelas características mensuráveis no modelo de predição (MAHLER, 2016).

Atualmente, as diretrizes da Beef Improvement Federation (BIF, 2016) sugerem um período de adaptação de 21 dias seguido de um período de teste de 70 dias, para que se obtenham dados precisos quanto à ingestão de alimentos e ganho diário médio. O período de adaptação proporciona aclimatização dos animais à instalação de teste e à dieta. O período de teste de 70 dias serve para a obtenção de dados de ingestão de alimentos e pesos usados para calcular a taxa de ganho e estimativa do CAR. (BIF, 2016).

Como a ingestão de alimento é altamente dependente da idade fisiológica, os animais devem ter idades semelhantes quando os testes de ingestão alimentar forem conduzidos. Na avaliação de ingestão pós-desmame, os animais devem compor um grupo contemporâneo e com pelo menos 240 dias de idade ao início do teste (BIF, 2016).

A seleção para eficiência alimentar pode potencialmente resultar em redução de 9 a 10% nos custos de manutenção do efetivo de vacas, de 10 a 12% no consumo de ração, de 25 a 30% na emissão de metano, e de 15 a 20 % na produção de dejetos sem afetar o ganho médio diário (GMD) ou tamanho de vaca adulta (BASARAB et al., 2003).

Koch et al. (1963) também propuseram o Ganho de Peso Residual (GPR) como uma medida alternativa para identificar a eficiência alimentar entre os animais quanto ao crescimento. O cálculo de GPR é feito usando uma equação de regressão linear muito semelhante à usada para o cálculo de CAR, onde animais com GPR positivo ganham mais peso do que o esperado com base na ingestão de alimento (mais eficiente), enquanto os animais com GPR negativo ganham menos peso do que o esperado (menos eficiente) (WRIGHT, 2014).

Consumo e Ganho de Peso Residual (CGPR) foi proposto por Berry e Crowley (2012), onde os autores padronizaram o CAR e o GPR para terem variâncias iguais e, simplesmente, somaram as duas variáveis (após inverter o sinal de CAR, de modo que um valor positivo fosse mais favorável), fazendo com que valores mais positivos fossem desejáveis na nova medida. Ao combinar CAR e o GPR em CGPR, a independência entre CAR e peso metabólico foi mantida, mas o CGPR teve correlação fenotípica negativa com a ingestão de alimentos e correlação fenotípica positiva com ganho de peso. Com isso há redução (mas não exclusão) na probabilidade de um animal de crescimento mais lento ter classificação favorável no CGPR (BERRY & CROWLEY, 2012).

Portanto o propósito do CGPR é identificar animais que necessitem menos tempo em confinamento (maiores GDM), mas com menores consumos de alimento diário para garantir tal ganho e ao mesmo tempo suprir as exigências de mantença (BERRY & CROWLEY, 2012).

O Consumo Alimentar Residual (CAR) foi calculado como a ingestão de matéria seca observada (IMS) menos a IMS para atender os requerimentos energéticos de mantença e crescimento (Koch, 1963).

O consumo predito será obtido através do seguinte modelo de regressão:

IMS predito = $\beta 0 + \beta 1$ GMD + $\beta 2$ PCMM0,75 + $\beta 3$ EGSUS + $\epsilon 1$

Onde: IMS – Ingestão de matéria seca diária por animal; $\beta 0$ – intercepto; $\beta 1$ – coeficiente linear de regressão para ganho médio diário (GMD); $\beta 2$ - coeficiente linear de regressão para peso metabólico na metade do teste (PVMMT0,75); $\beta 3$ – coeficiente linear parcial de regressão para espessura de gordura subcutânea por ultrassom (EGSUS); $\epsilon 1$ – Resíduo que expressa a medida da eficiência do CAR.

O CAR será determinado pela diferença entre o CMS medido e o CMS predito. Os animais serão classificados e separados dentro do grupo contemporâneo, em grupos de alto CAR (maior que 1 desvio padrão acima da média), médio CAR (dentro de +/- 1 desvio padrão) e baixo CAR (maior que 1 desvio padrão abaixo da média) (MAHLER, 2016).

Relatório Final

			PARTICIPAI	NTES	
IDV	DN	Idade em 28/11/2023 (dias)	Propriedade	Criador	Peso Entrada (kg)
2117	27/09/2022	427	LA REINA	Diego Panosso	247
2129	30/09/2022	424	LA REINA	Diego Panosso	283
2135	03/10/2022	421	LA REINA	Diego Panosso	263
22544	09/09/2022	445	EEA	EEA/UFRGS	356
22560	13/09/2022	441	EEA	EEA/UFRGS	322
22588	10/10/2022	414	EEA	EEA/UFRGS	308
A049	19/08/2022	466	GAP	Marcia Linhares	299
A1237	19/08/2022	466	GAP	Marcia Linhares	300
A1399	30/08/2022	455	GAP	Marcia Linhares	301
D73	04/09/2022	450	VPR	Vinícius de Pietro da Rosa	273
D80	05/12/2022	358	VPR	Vinícius de Pietro da Rosa	242
FIVH07	13/10/2022	411	BRANGUSGR	Gil Fernandes	235
FIVH11	15/10/2022	409	BRANGUSGR	Gil Fernandes	214
FIVH20	19/10/2022	405	BRANGUSGR	Gil Fernandes	210
H46	04/10/2022	420	BRANGUSGR	Gil Fernandes	202
J105	21/09/2022	433	PAIPASSO	Antônio Carlos Corrêa Osório	250
J118	24/09/2022	430	PAIPASSO	Antônio Carlos Corrêa Osório	271
J19	12/08/2022	473	PAIPASSO	Antônio Carlos Corrêa Osório	321
J28	02/09/2022	452	PAIPASSO	Antônio Carlos Corrêa Osório	267
J30	30/08/2022	455	PAIPASSO	Antônio Carlos Corrêa Osório	257
K175	03/10/2022	421	JMT	JMT Agropecuaria Ltda	294
K189	07/10/2022	417	JMT	JMT Agropecuaria Ltda	286
K191	09/10/2022	415	JMT	JMT Agropecuaria Ltda	293
R424	14/08/2022	471	EST. MADRINHA	Ney Artur de Azambuja	272
R438	18/08/2022	467	EST. MADRINHA	Ney Artur de Azambuja	321
R444	28/08/2022	457	EST. MADRINHA	Ney Artur de Azambuja	278

						PESO							
			Início do Test	:e			Meio do Tes	te			Fim do Teste	9	
Ide	entificação	18/09/2023	19/09/2023			23/10/2023	24/10/2023			27/11/2023	28/11/2023		
				Média	GMD			Média	GMD			Média	GMD
IDV	Fazenda	Peso (kg)	Peso (kg)	(kg)	(kg)	Peso (kg)	Peso (kg)	(kg)	(kg)	Peso (kg)	Peso (kg)	(kg)	(kg)
2117	LA REINA	301,0	303,0	302,0	1,4	371,0	367,0	369,0	1,9	430	428	429	1,8
2129	LA REINA	333,0	332,0	332,5	1,3	403,0	407,0	405,0	2,1	472	464	468	1,9
2135	LA REINA	306,0	300,0	303,0	1,1	392,0	396,0	394,0	2,6	452	445	448,5	2,1
22544	EEA	406,0	407,0	406,5	1,3	446,0	447,0	446,5	1,1	464	459	461,5	0,8
22560	EEA	362,0	362,0	362,0	1,1	429,0	425,0	427,0	1,9	485	469	477	1,6
22588	EEA	353,0	352,0	352,5	1,2	388,0	381,0	384,5	0,9	451	443	447	1,4
A049	GAP	373,0	374,0	373,5	2,0	446,0	440,0	443,0	2,0	479	478	478,5	1,5
A1237	GAP	380,0	386,0	383,0	2,2	483,0	475,0	479,0	2,7	544	534	539	2,2
A1399	GAP	373,0	372,0	372,5	1,9	458,0	461,0	459,5	2,5	530	524	527	2,2
D73	VPR	333,0	315,0	324,0	1,3	389,0	388,0	388,5	1,8	447	440	443,5	1,7
D80	VPR	298,0	299,0	298,5	1,5	369,0	373,0	371,0	2,1	435	431	433	1,9
FIVH07	BRANGUSGR	308,0	318,0	313,0	2,1	412,0	408,0	410,0	2,8	490	486	488	2,5
FIVH11	BRANGUSGR	272,0	278,0	275,0	1,6	364,0	362,0	363,0	2,5	437	435	436	2,3
FIVH20	BRANGUSGR	270,0	277,0	273,5	1,7	365,0	362,0	363,5	2,6	439	425	432	2,3
H46	BRANGUSGR	267,0	265,0	266,0	1,7	338,0	333,0	335,5	2,0	390	385	387,5	1,7
J105	PAIPASSO	293,0	294,0	293,5	1,1	357,0	357,0	357,0	1,8	413	420	416,5	1,8
J118	PAIPASSO	333,0	322,0	327,5	1,5	404,0	410,0	407,0	2,3	467	459	463	1,9
J19	PAIPASSO	390,0	388,0	389,0	1,8	465,0	458,0	461,5	2,1	522	514	518	1,8
J28	PAIPASSO	334,0	331,0	332,5	1,7	396,0	390,0	393,0	1,7	450	449	449,5	1,7
J30	PAIPASSO	310,0	311,0	310,5	1,4	366,0	365,0	365,5	1,6	408	408	408	1,4
K175	JMT	358,0	362,0	360,0	1,7	431,0	426,0	428,5	2,0	475	465	470	1,6
K189	JMT	349,0	342,0	345,5	1,6	418,0	413,0	415,5	2,0	475	464	469,5	1,8
K191	JMT	354,0	352,0	353,0	1,6	424,0	425,0	424,5	2,0	461	464	462,5	1,6
R424	EST. MADRINHA	330,0	333,0	331,5	1,6	396,0	398,0	397,0	1,9	470	461	465,5	1,9
R438	EST. MADRINHA	392,0	390,0	391,0	1,8	471,0	474,0	472,5	2,3	550	542	546	2,2
R444	EST. MADRINHA	346,0	341,0	343,5	1,7	420,0	419,0	419,5	2,2	471	466	468,5	1,8
MÉDIA		335,5	334,8	335,2	1,6	407,7	406,2	406,9	2,1	465,7	459,9	462,8	1,8
MÍNIMO		267,0	265,0	266,0	1,1	338,0	333,0	335,5	0,9	390,0	385,0	387,5	0,8
MÁXIMO		406,0	407,0	406,5	2,2	483,0	475,0	479,0	2,8	550,0	542,0	546,0	2,5

		ALTURA		
		Início	Meio	Fim
Ide	entificação	19/09/2023	23/10/2023	28/11/2023
IDV	Fazenda	Altura(cm)	Altura(cm)	Altura(cm)
2117	LA REINA	115	121	124
2129	LA REINA	118	122	128
2135	LA REINA	115	120	123
22544	EEA	122	127	127
22560	EEA	120	125	129
22588	EEA	119	120	124
A049	GAP	117	121	123
A1237	GAP	123	127	129
A1399	GAP	120	126	128
D73	VPR	117	123	127
D80	VPR	116 123		125
FIVH07	BRANGUSGR	121	121 123	
FIVH11	BRANGUSGR	116	121	126
FIVH20	BRANGUSGR	114	120	126
H46	BRANGUSGR	110	115	118
J105	PAIPASSO	117	122	124
J118	PAIPASSO	118	124	126
J19	PAIPASSO	122	127	128
J28	PAIPASSO	115	120	124
J30	PAIPASSO	119	125	125
K175	JMT	126	132	132
K189	JMT	122	126	129
K191	JMT	118	122	127
R424	EST. MADRINHA	123	125	132
R438	EST. MADRINHA	122	128	128
R444	EST. MADRINHA	119	125	129
MÉDIA		118,6	123,5	126,6
MÍNIMO		110,0	115,0	118,0
MÁXIMO		126,0	132,0	132,0

		FRAME		
		Fi	m do Teste	
Ide	ntificação	2	8/11/2023	
IDV	Fazenda	Idade (dias)	Altura (cm)	Frame
2117	LA REINA	427	124	5,3
2129	LA REINA	424	128	6,1
2135	LA REINA	421	123	5,2
22544	EEA	445	127	5,8
22560	EEA	441	129	6,2
22588	EEA	414	124	5,4
A049	GAP	466	123	4,8
A1237	GAP	466	129	6,0
A1399	GAP	455	128	5,9
D73	VPR	450	127	5,7
D80	VPR	358	125	6,1
FIVH07	BRANGUSGR	411	130	6,6
FIVH11	BRANGUSGR	409	126	5,9
FIVH20	BRANGUSGR	405	126	5,9
H46	BRANGUSGR	420	118	4,2
J105	PAIPASSO	433	124	5,3
J118	PAIPASSO	430	126	5,7
J19	PAIPASSO	473	128	5,8
J28	PAIPASSO	452	124	5,1
J30	PAIPASSO	455	125	5,3
K175	JMT	421	132	6,9
K189	JMT	417	129	6,4
K191	JMT	415	127	6,0
R424	EST. MADRINHA	471	132	6,6
R438	EST. MADRINHA	467	128	5,8
R444	EST. MADRINHA	457	129	6,1
MÉDIA		434,7	126,6	5,8
MÍNIMO		358,0	118,0	4,2
MÁXIMO		473,0	132,0	6,9

	PERÍN	METRO ESCRO	TAL	
		Início	Meio	Fim
Ide	ntificação	19/09/2023	23/10/2023	28/11/2023
IDV	Fazenda	PE (cm)	PE (cm)	PE (cm)
2117	LA REINA	27,0	28,5	30,5
2129	LA REINA	31,0	35,5	37,5
2135	LA REINA	29,0	33,0	34
22544	EEA	32,5	34,5	34
22560	EEA	28,5	34,0	37
22588	EEA	32,5	35,0	37,5
A049	GAP	33,0	36,0	35,5
A1237	GAP	40,5	42,0	45
A1399	GAP	34,0	36,5	40
D73	VPR	24,0	26,5	28
D80	VPR	28,0	31,5	35
FIVH07	BRANGUSGR	27,5	31,5	34
FIVH11	BRANGUSGR	28,0	31,5	36
FIVH20	BRANGUSGR	26,0	31,0	34,5
H46	BRANGUSGR	28,5	32,5	35,5
J105	PAIPASSO	28,0	31,5	34
J118	PAIPASSO	31,0	35,5	39,5
J19	PAIPASSO	34,5	39,0	39
J28	PAIPASSO	32,0	36,5	38,5
J30	PAIPASSO	33,5	35,5	38
K175	JMT	33,5	36,0	37
K189	JMT	30,0	36,0	37,5
K191	JMT	29,0	32,5	35,5
R424	EST. MADRINHA	27,0	29,5	33,5
R438	EST. MADRINHA	34,0	37,0	37,5
R444	EST. MADRINHA	33,5	37,0	38
MÉDIA		30,6	34,1	36,2
MÍNIMO		24,0	26,5	28,0
MÁXIMO		40,5	42,0	45,0

				SPEED			
Fim			ı	nício		Fim	
28/11/2023	Ide	entificação	19/09/2023		28/1		
PE (cm)	IDV	Faranda	Tempo	Velocidade	Tempo	Velocidade	
30,5	IDV	Fazenda	(s)	(m/s)	(s)	(m/s)	
37,5	2117	LA REINA	1,85	0,97	0,92	1,96	NE
34	2129	LA REINA	1,37	1,31	1,11	1,62	IN
34	2135	LA REINA	1,60	1,13	1,64	1,10	CA
37	22544	EEA	1,47	1,22	1,19	1,51	IN
37,5	22560	EEA	1,31	1,37	0,96	1,88	NE
35,5	22588	EEA	1,39	1,29	1,09	1,65	IN
45	A049	GAP	2,15	0,84	1,29	1,40	INC
40	A1237	GAP	0,81	2,22	1,15	1,57	INC
28	A1399	GAP	1,48	1,22	1,72	1,05	CA
35	D73	VPR	0,96	1,88	0,78	2,31	NE
34	D80	VPR	1,21	1,49	1,02	1,76	INC
36	FIVH07	BRANGUSGR	1,78	1,01	1,46	1,23	CA
34,5	FIVH11	BRANGUSGR	0,56	3,21	0,64	2,81	NE
35,5	FIVH20	BRANGUSGR	1,50	1,20	1,74	1,03	CA
34	H46	BRANGUSGR	1,36	1,32	3,84	0,47	CA
39,5	J105	PAIPASSO	1,39	1,29	0,92	1,96	NE
39	J118	PAIPASSO	1,15	1,57	1,03	1,75	INC
38,5	J19	PAIPASSO	1,53	1,18	1,63	1,10	CAI
38	J28	PAIPASSO	1,25	1,44	0,97	1,86	NE
37	J30	PAIPASSO	0,67	2,69	0,69	2,61	NE
37,5	K175	JMT	2,68	0,67	1,16	1,55	INC
35,5	K189	JMT	1,28	1,41	1,43	1,26	CAI
33,5	K191	JMT	0,77	2,34	1,12	1,61	INC
37,5	R424	EST. MADRINHA	1,29	1,40	1,64	1,10	CAI
38	R438	EST. MADRINHA	0,99	1,82	0,94	1,91	NE
36,2	R444	EST. MADRINHA	1,39	1,29	1,75	1,03	CA
28,0	MÉDIA		1,35	1,49	1,30	1,58	
45,0	MÍNIMO		0,56	0,67	0,64	0,47	
	MÁXIMO		2,68	3,21	3,84	2,81	

		DADOS	DE CARCAÇA			
			Fin	n do Test	е	
Ide	entificação		28	/11/2023	3	
		AOLUS		EGSUS	EGPUS	PGIMUS
IDV	Fazenda	(cm²)	AOLUS/PV	(mm)	(mm)	(%)
2117	LA REINA	78,04	8,19	3,20	4,77	2,24
2129	LA REINA	93,89	9,03	4,85	5,88	2,57
2135	LA REINA	82,84	8,31	4,49	4,74	4,28
22544	EEA	78,73	7,68	3,72	7,90	2,10
22560	EEA	74,26	7,01	4,24	7,90	2,95
22588	EEA	78,59	7,91	5,39	7,91	2,47
A049	GAP	85,30	8,02	5,17	13,16	2,56
A1237	GAP	79,33	6,62	2,68	4,24	2,15
A1399	GAP	86,13	7,35	6,34	9,53	3,08
D73	VPR	75,69	7,68	4,24	8,95	2,94
D80	VPR	76,79	7,99	5,49	8,48	2,09
FIVH07	BRANGUSGR	76,57	7,06	3,20	6,84	2,72
FIVH11	BRANGUSGR	80,03	8,26	4,85	4,74	3,30
FIVH20	BRANGUSGR	80,51	8,82	5,49	5,88	2,50
H46	BRANGUSGR	80,71	9,37	3,52	8,96	1,43
J105	PAIPASSO	79,26	8,56	4,77	16,32	1,83
J118	PAIPASSO	82,53	8,02	6,50	6,84	1,53
J19	PAIPASSO	87,17	7,57	3,83	14,22	2,33
J28	PAIPASSO	85,74	8,58	6,34	6,86	2,86
J30	PAIPASSO	74,31	8,20	5,99	6,84	1,61
K175	JMT	75,17	7,20	5,65	10,00	2,89
K189	JMT	86,18	8,26	3,05	5,81	2,05
K191	JMT	92,82	9,03	3,72	6,32	1,77
R424	EST. MADRINHA	84,24	8,14	4,34	7,90	2,06
R438	EST. MADRINHA	83,65	6,89	5,88	15,80	2,85
R444	EST. MADRINHA	78,03	7,50	4,98	10,00	3,79
MÉDIA		81,40	7,97	4,69	8,34	2,50
MÍNIMO		74,26	6,62	2,68	4,24	1,43
MÁXIMO		93,89	9,37	6,50	16,32	4,28

Índice de Gordura - IG

Onde: EGS = 40%; EGP = 60%

ĺľ	NDICE DE GORDURA	4
Ide	entificação	
IDV	Fazenda	IG (mm)
2117	LA REINA	4,14
2129	LA REINA	5,47
2135	LA REINA	4,64
22544	EEA	6,23
22560	EEA	6,43
22588	EEA	6,90
A049	GAP	9,96
A1237	GAP	3,62
A1399	GAP	8,25
D73	VPR	7,07
D80	VPR	7,29
FIVH07	BRANGUSGR	5,39
FIVH11	BRANGUSGR	4,78
FIVH20	BRANGUSGR	5,72
H46	BRANGUSGR	6,78
J105	PAIPASSO	11,70
J118	PAIPASSO	6,71
J19	PAIPASSO	10,06
J28	PAIPASSO	6,65
J30	PAIPASSO	6,50
K175	JMT	8,26
K189	JMT	4,71
K191	JMT	5,28
R424	EST. MADRINHA	6,47
R438	EST. MADRINHA	11,83
R444	EST. MADRINHA	7,99
MÉDIA		6,88
MÍNIMO		3,62
MÁXIMO		11,83

	MÉDIA DE CON	ISUMO		
Ide	ntificação	Consu	ımo	
IDV	Fazenda	Dieta (kg)	MS (kg)	
2117	LA REINA	18,67	8,59	
2129	LA REINA	21,38	9,84	
2135	LA REINA	23,15	10,65	
22544	EEA	15,95	7,34	
22560	EEA	19,86	9,14	
22588	EEA	18,81	8,65	
A049	GAP	25,90	11,91	
A1237	GAP	27,25	12,53	
A1399	GAP	27,68	12,73	
D73	VPR	21,45	9,87	
D80	VPR	20,10	9,25	
FIVH07	BRANGUSGR	25,27	11,63	
FIVH11	BRANGUSGR	21,68	9,97	
FIVH20	BRANGUSGR	21,70	9,98	
H46	BRANGUSGR	19,59	9,01	
J105	PAIPASSO	20,77	9,56	
J118	PAIPASSO	22,86	10,51	
J19	PAIPASSO	25,59	11,77	
J28	PAIPASSO	21,67	9,97	
J30	PAIPASSO	19,19	8,83	
K175	JMT	21,06	9,69	
K189	JMT	20,48	9,42	
K191	JMT	19,01	8,75	
R424	EST. MADRINHA	21,33	9,81	
R438	EST. MADRINHA	28,76	13,23	
R444	EST. MADRINHA	23,39	10,76	
MÉDIA		22,02	10,13	
MÍNIMO		15,95	7,34	
MÁXIMO		28,76	13,23	

Consumo Alimentar Residual - CAR

O CAR é calculado como a diferença entre o consumo de matéria seca observado (kg/dia) e o consumo de matéria seca predito, através de ajustes para peso vivo médio metabólico (PVMM, kg0.75) e ganho médio diário em peso (GMD, kg/dia).

Identificação	CA	R		CAR	fat
IDV	CAR	Rank	Identificação	CARfat	Rank
22560	-0,984	1	22560	-0,879	1
K191	-0,974	2	K191	-0,736	2
22544	-0,880	3	22544	-0,647	3
K189	-0,774	4	2129	-0,646	4
2117	-0,733	5	D80	-0,560	5
2129	-0,606	6	FIVH20	-0,466	6
R424	-0,488	7	FIVH11	-0,451	7
FIVH11	-0,426	8	K175	-0,433	8
D80	-0,374	9	R424	-0,399	9
FIVH07	-0,345	10	K189	-0,370	10
FIVH20	-0,283	11	2117	-0,349	11
K175	-0,186	12	J118	-0,319	12
A1237	-0,120	13	22588	-0,253	13
22588	-0,082	14	A1399	0,005	14
J118	0,133	15	FIVH07	0,022	15
2135	0,283	16	J28	0,049	16
J19	0,372	17	R438	0,226	17
D73	0,402	18	2135	0,340	18
A1399	0,438	19	A1237	0,354	19
J28	0,455	20	J30	0,432	20
R444	0,520	21	R444	0,443	21
R438	0,552	22	D73	0,520	22
J105	0,641	23	J19	0,567	23
J30	0,739	24	J105	0,640	24
H46	0,764	25	H46	1,085	25
A049	1,955	26	A049	1,825	26

Ganho de Peso Residual - GPR

O Ganho de Peso Residual (GPR) foi proposto por Koch et al. (1963) para ser usado como uma medida alternativa de identificação da eficiência alimentar entre animais quanto ao crescimento. O cálculo de GPR é feito através de uma equação de regressão linear muito semelhante à usada para o cálculo de CAR, onde animais com GPR positivo ganham mais peso do que o esperado com base na ingestão de alimento (mais eficiente), enquanto os animais com GPR negativo ganham menos peso do que o esperado (menos eficiente) (WRIGHT, 2014).

	GPR			GPR	fat
Identificação	GPR	Rank	Identificação	GPRfat	Rank
FIVH07	0,317	1	FIVH11	0,263	1
FIVH11	0,269	2	FIVH20	0,257	2
FIVH20	0,221	3	2129	0,205	3
2129	0,190	4	FIVH07	0,198	4
22560	0,185	5	22560	0,178	5
2117	0,180	6	D80	0,178	6
K189	0,176	7	R424	0,133	7
A1237	0,169	8	J118	0,120	8
K191	0,155	9	A1399	0,116	9
R424	0,153	10	K191	0,116	10
D80	0,127	11	2117	0,088	11
A1399	0,022	12	K189	0,081	12
2135	0,016	13	R438	0,060	13
J118	0,005	14	K175	0,039	14
R438	-0,003	15	A1237	0,028	15
K175	-0,039	16	2135	-0,013	16
J19	-0,085	17	J28	-0,058	17
22544	-0,133	18	22588	-0,076	18
D73	-0,140	19	R444	-0,128	19
22588	-0,141	20	22544	-0,142	20
R444	-0,142	21	J19	-0,143	21
J28	-0,166	22	D73	-0,173	22
J105	-0,183	23	J105	-0,190	23
H46	-0,221	24	J30	-0,244	24
J30	-0,332	25	H46	-0,315	25
A049	-0,598	26	A049	-0,579	26

Consumo e Ganho de Peso Residual - CGPR

Consumo e Ganho de Peso Residual (CGPR), proposto por Berry e Crowley (2012), padroniza o CAR e o GPR para terem variâncias iguais somando-se as duas variáveis (após inverter o sinal do valor de CAR, de modo que um valor positivo fosse mais favorável), fazendo com que valores mais positivos fossem desejáveis na nova medida.

	CGPR			CGPR	fat
Identificação	CGPR	Rank	Identificação	CGPRfat	Rank
22560	1,168	1	22560	1,057	1
K191	1,129	2	K191	0,852	2
K189	0,950	3	2129	0,851	3
2117	0,913	4	D80	0,738	4
2129	0,795	5	FIVH20	0,723	5
22544	0,747	6	FIVH11	0,715	6
FIVH11	0,695	7	R424	0,531	7
FIVH07	0,663	8	22544	0,505	8
R424	0,641	9	K175	0,472	9
FIVH20	0,504	10	K189	0,451	10
D80	0,500	11	J118	0,439	11
A1237	0,289	12	2117	0,437	12
K175	0,147	13	22588	0,177	13
22588	-0,059	14	FIVH07	0,176	14
J118	-0,128	15	A1399	0,111	15
2135	-0,267	16	J28	-0,106	16
A1399	-0,416	17	R438	-0,167	17
J19	-0,458	18	A1237	-0,326	18
D73	-0,542	19	2135	-0,353	19
R438	-0,555	20	R444	-0,571	20
J28	-0,621	21	J30	-0,676	21
R444	-0,662	22	D73	-0,693	22
J105	-0,824	23	J19	-0,710	23
H46	-0,985	24	J105	-0,830	24
130	-1,071	25	H46	-1,399	25
A049	-2,552	26	A049	-2,404	26